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Analysis of related time-resolved fluorescence measurements can possibly lead to the determination of the
kinetic parameters of excited-state processes. A deterministic identifiability analysis on an error-free fluorescence
decay data surface has to be executed to verify whether the parameters of a particular model can be determined
and may point to the minimal experimental conditions under which this will become possible. In this work,
similarity transformation is chosen as an identifiability analysis approach because it also gives the explicit
relationships between the true and alternative model parameters. Results are presented for two kinetic models
of a reversible intermolecular two-state excited-state process in isotropic environments: (a) with coupled
species-dependent rotational diffusion described by Brownian reorientation and (b) with added quencher. For
model a, both spherically and cylindrically symmetric rotors, with no change in the principal axes of rotation

in the latter, are considered. The fluorescedaesponse functionk(t) andlq(t), for fluorescence polarized
respectively parallel and perpendicular to the electric vector of linearly polarized excitation, are used to define
the sumS(t) = Iy(t) + 2 I(t) and the differenc®(t) = I(t) — Ig(t) function. The identifiability analysis is

carried out using th&t) andD(t) functions. The analysis involvin§t) shows that two physically acceptable
possible solutions for the overall rate constants of the excited-state process exist. Inclusion of information
from polarized fluorescence measurements on the rotational kinetic behavior contaib@gdrasults in the

unique set of rate constants and rotational diffusion coefficients when the rotational diffusion coefficients are
different. For model b, it is shown that addition of quencher plays formally the same role as rotational diffusion
as far as the identification is concerned. When the quenching rate constants are different, the rate constants
of a reversible intermolecular two-state excited-state process with added quencher can be uniquely determined.

1. Introduction conventional approaeithough adequate in many casdails

Time-resolved fluorescence measurements are essential toold® @ke full advantage of relations that may exist between
for investigating the dynamics of excited-state processes. Toindividual decay traces. The simultaneous or global an&lysis
decide on the appropriate model to describe a photophysicalf multiple decays uses (and tests) those relationships by keeping
system, fluorescence decay traces are measured under differerfome model parameters in common (i.e., linked in global curve-
experimental conditions, so that a multidimensional fluorescence fitting analysis) between various related experiments. For the
decay data surface is generated. For the models of reversiblenodels discussed in this paper, the decay timesght to be
intermolecular two-state excited-state processesisidered in independent of the excitation and emission wavelengths and,
this paper-the experimental axes that can be varied are the hence, can be linked between experiments measured at different
excitation and emission wavelengths, coreactant concentration excitation and emission wavelengths. The advantages of the
quencher concentration, and polarization. In many cases, theglobal analysis method are the improved model-discriminating
fluorescence response after a short excitation pulse can becapability and the increased accuracy and precision of the
described by a sum of exponentially decaying functions. In the parameter estimates in comparison to the single-curve anfysis.
smgle-curvg analysis, each quoresc_ence decay curve |s_analyzeql_|oweven in many instances, the decay timesill vary
separately in terms of the decay timesind their associated between related experiments and hence cannot be linked. This

amplitudeso. A proposed model is then tested by the consis- is, for example, the case where changing the coreactant and/or
tency of the recovered decay parameters. A subsequent analysis

of the parameter estimates provides the relevant parameters Oguencher concentrations leads to changes values. In this

interest, e.g., the rate constants of the excited-state process. Thi%ase' It is more aPp“’p”ate to fit directly for the more
undamental underlying parameters, namely the rate constants
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model is directly imposed on the data, and the model-testing  Since the first identifiability analysis of an intermolecular two-
capability is improved. state excited-state procelSglentifiability studies of a large range
Whenever a particular model is proposed for the description of compartmental models of intermolecular as well as intramo-
of excited-state processes, one should start with a study to verifylecular two-state and three-state excited-state processes have
whether the kinetic and spectral parameters defining the modelbeen reported (see ref 11 for literature data). The identifiability
can be determined from error-free fluorescence decay data. Thisanalyses of reversible intermolecular two-state excited-state
is the subject matter of the deterministic identifiability analjsfs.  processes in the abseftd? and presencé of quencher have
Such an investigation may also point to the minimal set of been confined to consideration of the whole excited-state
experimental conditions under which the model parameters will population, as monitored by total (or “magic angle”-selected)
be uniquely determined. The identifiability of various models fluorescence.
of reversible intermolecular two-state excited-state processes There are several methods available for the analysis of the
constitutes the topic of this paper. deterministic identifiability (i.e., identifiability with perfect
Since time-resolved fluorescence can in many instances bedata)*> The initial approacH 14 used to investigate the
described by a set of coupled first-order differential equations, identification of reversible intermolecular two-state excited-state
modeling of excited-state processes in photophysics can con-processes involved Markov parameters and elementary functions
veniently be done within the framework of compartmental of the rate constants. The more recent Wérksed similarity
analysis. Considering the extensive use of compartmentaltransformationg:>1516The method of similarity transformation
modeling in biomedicine, pharmacokinetics, analysis of eco- offers a direct way of determining whether a model is globally
systems, etc. (see, for example, refs53, it is rather surprising or locally identifiable or not identifiable at all. Moreover,
that its use in photophysics started relatively fat. similarity transformation provides the explicit relationship
Let us define first the term “compartment” in a photophysical between the true and alternative model parameters.
context. In photophysics, a compartment is defined as a This report focuses primarily on the identifiability via
subsystem composed of a distinct type of species that actssimilarity transformation of a model of reversibteermolecular
kinetically in a unique way. The concentration of the constituting two-state excited-state processes, without transient effects (i.e.,
species can change when the compartments exchange materialith kinetics governed by time-independent rate constants),
through intramolecular or intermolecular processes. In the accompanied by species-dependent rotational diffusion, as
context of compartmental modeling of excited-state processes,detected by time-resolved fluorescence anisotropy. Spherically
compartments can be divided into ground and excited-state and cylindrically symmetric rotors are considered, with in the
compartments depending upon the state of the composinglatter case, no change in the principal axes of diffusion tensors
species. There may be inputs from ground-state compartmentsof hoth excited-state species. The case where the principal axes
into one or more of the excited-state compartments by photo- of the diffusion tensors of both interconverting excited-state
excitation. Since there is always output from the excited-state species are not the same is very COIT]H'GXId is not considered
compartments to the ground-state compartments through (radiahere. In the extensive field of time-resolved fluorescence
tive and radiationless) deactivation, a photophysical system spectroscopy, only a relatively small literature has been devoted
involving excited-state compartments is said to be open. If the to the problem of excited-state processes coupled with species-
concentrations of the species in the ground state do notdependent rotational diffusion (see reference 18 and references
significantly change upon photoexcitation, it suffices to consider therein). Chuang and EisentHaprovided the basis for the

the excited-state compartments. derivation of explicit expressions describing the time-resolved
. Thg_re are three possible outcomes to the deterministic fluorescence anisotropy of two-state excited-state processes
identifiability analysis. coupled with species-dependent rotational diffusion without

(1) The parameters of an assumed model can be estimatedransient effects. Further extensions relevant for the present study
uniquely and the model isniquely(globally) identifiable from were presented by Cross et'@land by LimpouchoVveand
the idealized experiment. ProchHaka?® On the basis of the theory reported in these
(2) There are a finite number of alternative estimates for some papers;’1°2%a compartmental description was derived for the
or all of the model parameters that fit the data and the model is fluorescence anisotropy decay of intermolecular two-state

locally identifiable. excited-state processes together with species-dependent rota-
(3) An infinite number of model parameter estimates fit tne tional diffusion?®
data and the model ignidentifiablefrom the experiment. A second issue addressed in this report is the identification

For the models considered in this paper, the parameters toof @ model of reversible intermolecular two-state excited-state
be identified are rate constants, spectral parameters related t@rocesses in the presence of added quencher. It will be shown
excitation and emission, rotational diffusion coefficients, and that for the identification, quenching fermally equivalent to
the relative orientation of absorption and emission dipoles.  rotational diffusion.

A deterministic identifiability analysis is a prerequisite before ~ The paper is organized as follows. In section 2, the general
attempting to estimate the model parameters from real experi-concepts of identifiability via similarity transformation are
mental observations. Large uncertainties and high correlationspresented. In section 3A, the polarization-selected kinetics of a
obtained in the parameter recovery from an experimental datareversible intermolecular two-state excited-state process coupled
surface might erroneously be ascribed to numerical ill- with species-dependent rotational diffusion is presented for
conditioning. However, these may be rather indicative of the cylindrically symmetrical ellipsoids. Thé&response functions,
fact that the model parameters cannot be recovered at all (i.e.ly(t) andI(t), for fluorescence polarized respectively parallel
the model is unidentifiable). Indeed, parameter estimates with and perpendicular to the electric vector of linearly polarized
large errors also may be due to the fact that extra time-resolvedexcitation, are used to define the s@) = I(t) + 2 Io(t) and
fluorescence data along additional experimental axes arethe differenceD(t) = I(t) — I(t) function. The sumJt), and
required or that the used experimental technique can neverdifference D(t), functions are expressed in matrix form, suitable
generate the parameters of the assumed model. for the identifiability analysis. Section 3B gives the matrix
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formulation of the fluorescena&responseé)(t) of a model of
reversible intermolecular two-state excited-state processes in the
presence of added quencher. Section 4 deals with the deter-
ministic identifiability analysis of these two kinetic models. In
section 4A we show how the information from polarized
measurementsexpressed inSt) and D(t)—is used for the
determination of the rate constants and rotational diffusion
coefficients. Section 4B describes the identification analysis
involving Q(t) for the model with added quencher.

Numerical identifiability (curve-fitting) which takes into hv kon kon kop ksl |Av
account the noise level on the experimental data, the sampling
and the sensitivity of the algorithms used in the estimation of
the parameters are not considered in this study.

Dy

2. Identifiability Analysis via Similarity Transformation:
General Concepts

For a linear, time-invariant compartmental system with

excited-state compartments, the fluorescenoesponse function ) ) ) T
f(t) can be expressed &s Figure 1. Graphic representation of a reversible intermolecular two-

state excited-state process, including rotation. Species A* and B* are
pictured as being initially excited from their ground states A and B by
f(t) = cexp@At)b 1) an infinitely short linearly polarized light pulse at wavelengitt in a
unique absorption band. The excited-state processes are described by
whereb is a column vector of dimensioN whose elements  the deactivation rate constanksa and kos, and the excited-state

are the initial concentrations of each excited-state compartment;€xchange rate constarks, andkas. The transformation of species
cis a 1 x N vector related to the contribution of each A* into B* is mediated by coreactant X with concentration {X]

L . Simultaneously the species rotate with rate constants determined by
compartment to the emissioA;is aN x N matrix (“compart- the corresponding rotational diffusion tens@s and Dg, which may
mental matrix”) containing the kinetic information (“transfer differ between the species. The polarized emission of each species
coefficients”) of all processes. Equation 1 shows that the depends on the relative orientation of its emission transition moment
response of a linear, time-invariant compartmental system to (with unit vectoréa or &) at the instance of emission with respect to
an |mpu|s|ve perturbatlon Cons|sts of a sum Of exponen“a's the .abSOrptiOn moment (Wlth unit Veclﬁ;( or é.B) in the Species |n|t|a“y
(usually with as many exponentials as compartments). excited.

The set A, b, ¢) is called a realization of the fluorescence One can rewrite eq 3 in the form
o-response functiori(t). The deterministic identification (or
identifiability) study investigates whether it is possible to find TAT=AT (4)
different realizations of(t), e.g., @*, b*, c¢), so that

X + A

The alternativeo™ andc*t are given by

f(t, A,b,c) =f(t, A", b", c" 2 _
In other words, the fluorescenéeresponse functiof{t) should ct=cT (5b)
be the same for the trué\( b, ¢) and the alternativeX™, b,
c") model parameter séf Equations 3 (or 4) and 5 should be satisfied for each experi-
Global identifiability is achieved wheA™ = A, b™ = b, mental condition. For the models considered, the possible

andct = c (i.e., a unique set of model parameters is obtained). experimental variables are coreactant concentratiog §ench-
The model is locally identifiable when there is a limited set of er concentration [Q] excitation wavelengtfi;®, and emission
alternativeA™, b™, andc*. An unidentifiable model is found  wavelengthi;®™ (and in principle also the orientations of the

when there are an infinite number of alternatiéé, b*, and polarizers in the excitation and emission paths). This implies

c. that the matriXT should be independent of [X][Q];, 4i®%, and
The specific definitions of the compartmental mattixthe ~ 4°™ Indeed, since® should not depend on [X][Q];, andZ;®

excitation coefficientsh, and the emission coefficientsare T should be independent of [¥][Q];, and Z;* Similarly,

given in section 3. The formulation given in eq 2 is appropriate because of the independencebdf(andA™) of 4™ T should
for most systems found in biomedicine, pharmacokinetics, be independent o™
ecosystem modeling, and engineeringput it is not suitable

for photophysical systems where absolute valuesbfand ¢ 3. Kinetics
cannot be obtained, as will be discussed in section 4. A. Reversible Intermolecular Two-State Excited-State
Any other (alternative) realizationA(", b, ct) of f(t) is Process with Species-Dependent Rotational Diffusiohe
related to the true setA( b, c) via similarity transforma- linear, time-invariant photophysical system consisting of two
tion,*511.15,16 different interchanging species A and B, each with distinct
rotational characteristiesas depicted in Figure-iis considered.
At =T71AT (3) The two ground-state species are assumed to be in equilibrium.

Photoexcitation of the system produces the excited-state species

whereT is a constant invertible (or nonsingular) matrix (i.e., A*and B* which can decay by fluorescenck-f and nonra-
detT = 0) having the same dimension &s diative (r) processeskoa (=kea + kura) andkos (=kes +
knrs) denote the composite deactivation rate constants of A*
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and B*, respectively. The rate constant describing the intermo-

lecular (with coreactant X) transformation of A* into B* is
represented b¥ga. The reverse process, describediay, is
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molecular reference framex,(y, 2), chosen such that the
rotational diffusion tensor is diagontyeducing to the unique
componentD; (= Dy = Dy) in the case of thespherically

concentration independent. All the rate constants are assumedymmetricrotor |.

independent of the instantaneous orientation of the species. The For a spherically symmetrigotor (O, = Dy = Dy), the
physical requirement restricts the rate constants to be nonneg-matricesApgav (€q 11) are all identical and independentvbf
ative. The rotational relaxation of each excited-state species isNow each matrix blockApg v can be written as

governed by its principal rotational diffusion constants, here
Dp andDy for rotation, respectively, of and about the symmetry
axis of each of the cylindrically symmetric rotors depicted in

Figure 1. When the photophysical system shown in Figure 1 is

excited with ad-pulse of low intensity at time zero, so that the

_ —(6D4 + ko + kaalX]W)  Kag
Dk = [ [X] —(6Dg + kyg t Kag)
(13)

ground-state species population is not appreciably depleted, theyector by v [with L =M = 0 (eq 7), orL = 2 andM = +2,

fluorescence-response functiohjj(t) for the plane-polarized
component of emission of the two excited states (A* and B*),
having its electric vector polarized parallel to the electric vector
of the plane-polarized excitation light, and the fluorescence
o-response functiorm(t) for the perpendicularly polarized

+1, 0 (eq 8)] contains the excitation coefficiebig v (I denotes
either species A or B). As before, the subscripadk in b v
refer to the excitation wavelengfif* and coreactant concentra-
tion [X]k, respectively. The subscriptsand M of the by Lm
coefficients refer to the orientation of the absorption transitions.

component can be expressed, in the case of pure transitions angthe elements; Ly can be expressed as the product of the initial

isotropic solutions, a&
i (®) = %Sjk(t)[l + 2ry ()] = %Sjk(t) + :%Dijk(t) (6a)

() = %Sjk(t)[l — )] = %Sjk(t) - %Dijk(t) (6b)

concentration ofi*, bjx, the appropriate spherical harmonic
Y M(&)?2 for the orientation of the absorption transition moment
a in the molecular frame of specids and a scaling factor
BL:18

Biie v = B by Y, (&) (14)

whererii(t) denotes the fluorescence emission anisotropy and with

wheré?8

Sik(t) = 3¢, 00 €XPA o) Pik 00 (7
Dijk(t) = 3Cj om eXPAp)bix o 8

The subscripts, j, andk in ljk(t) and I5ik(t) (eq 6), inSik(t)
(eq 7) and inDjk(t) (eq 8) refer to the excitation wavelength
Ai# the emission waveleng#f™ and the coreactant concentra-
tion [X]k, respectively.

Matrix Akoo in €q 7 is given by eq 9:

A — _(kOA + kBA[X] k) kAB (9)
k.00 kBA[X] k _(kOB + kAB)
Apk in eq 8 is defined as
Apkz—2 O 0 0 0
0 Apk2-1 O 0 0
Ap=10 0 Apkzo O 0 (10)
0 0 0 Apk2r O
0 0 0 0 Apk 22
with blocks Apkom given by eq 11:
Apkom =
- (DA,ZM + kOA + kBA[X] k) kAB
kBA[X] k _(DB,ZM + kOB + kAB)
(11)

with M = =2, =1, 0, 1, 2.D;2v (I denotes either A or B) is
given by

Do = 6Dy + Mz(Dm —Dp) (12)
Note the invariance of egs 11 and 12 to the sigiof

D andDy (see Figure 1) are the components of the rotational
diffusion tensor of thecylindrically symmetric speciekin its

-1 /1 -1 /5
B, = 12\ and B, 300/ 3
ForL = M = 0, we have
R 1 By
Y3@)=—= and by = —
0 (&) N k.00~ 54 2

The 2 x 1 vectorbi o in eq 7 is explicitly given by eq 15:

by.00 = [Paioo Peikool” (15)

while the 10x 1 vectorby v in eq 8 is expressed as

Dy om =
T
[Baik 2-Pgik 2-2Paik 2- 1Pk 2- 1Paik 2008ik 2001, 21P8ik 21Paik 2208k 22]

(16)

Vector ¢ m [with L=M =0 (eq 7), orL = 2 andM = £2,

+1, 0 (eq 8)] contains the corresponding emission coefficients
Cmjm (M represents either species A* or B*). As before, the
subscripf in ¢, m refers to the emission wavelengifi™. The
emission coefficientsmj v are given by?

_ M2
Crmjm = CCrmjYL (&

whereCy = 16/3v7%, C, = 16/15v755, andY (&) is the
complex conjugate of the appropriate spherical harmonic for
the orientation of the emission transition moméntin the
molecular frame.

ForL = M = 0, we havecmjoo = 87%Cnmj/3.

The coefficientcy is defined a¥

ij = ka‘fAiiempm()'jem) da®"

wherekgn, is the fluorescence rate constant of specigsthe

17)

(18)
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SCHEME 1: Scheme Representing a Reversible
Intermolecular Two-State Excited-State Process with
Added Quenchep

kBA
X + A* P B
kap
+Q +Q
mv | | ko |koa hv [ | ks |kop
X + A —_— B

a |t is assumed that the quencher Q has only an effect on the excited
species and does not affect the ground-state equilibrium. The excited-

state processes are described by the deactivation rate corigheentsl

kos, and the excited-state exchange rate constiatsand kag. The
additional quenching of A* and B* due to the external quencher Q is
described by the rate constamts, andkgs, respectively.

subscriptj refers to the observation wavelength range;*™,
and pn(4;®™) is the spectral emission density of spea's
Vector ¢ oo in eq 7 is explicitly given by eq 19:

Cj.00 = [Caj 0cCsj,0d (19)
while vectorcjav in eq 8 is expressed as
Com =
[Caj,2-2Caj,2-2Caj,2-1Ca;j 2 1Caj 20Caj, 20CAj,21C8j,21CAj 228 22]
(20)

The matrix and vector formulations éf (eqs 9, 10)b (egs 15,
16), andc (egs 19, 20) will prove particularly convenient in
addressing the identifiability analysis to the considered models.
The identification analysis is simpler if one uses the “sum”
Sik(t) = lik(t) + 2lgi(t) and “difference”Di(t) = lik(t) —
Imijk(t) functions of the polarized fluorescenceod-response
functionsljj(t) andlmk(t). Si(t) corresponds to the total time-

Boens et al.
expressed in matrix notatior:
Qi (1) = ¢; exp@ by,

with Ay given by eq 224

(21)

Ay=

_(kQA[Q]I + kOA + kBA[X] k)
kealX]

kAB

_(kQB[Q]I + kOB + kAB)
(22)

bi andcj are given by eqgs 23 and 24, respectivély:

by = [Oai bei]" (23)

¢ = [Caj Cg] (24)

4. Identifiability Analysis

A. Reversible Intermolecular Two-State Excited-State
Process with Species-Dependent Rotational Diffusiosince
both Si(t) (eq 7) andDi(t) (eq 8) can be expressed in matrix
form, the identification analysis via similarity transformation
is carried out using th&(t) and Dik(t) functions.

Let us start with the identification involvin&(t). For f(t,

A, b, ¢) = Si(t) (eq 7), we have thah = Ayoo (g 9),b =
bikoo (€q 15),c = ¢j oo (g 19). MatrixT is then given by eq
25:

(25)

As Si(t) reflects the time dependence of the total fluorescence
and contains information only on the excited states, we can
expect that the identifiability analysis will be the same as that
reported for a reversible intermolecular two-state excited-state
process! Therefore, we refer to ref 11 for more mathematical
details. As the results of the identifiability analysis involving
Sik(t) will be used in the analysis witDj(t), we will sketch
the identifiability procedure.

Performing the matrix multiplication in eq 4 with = Ay oo
yields a set of four simultaneous equations. Since the elements

resolved emission of the photophysical system, is independent; (i = 1, ..., 4) of T are independent of [XJand sincekga = 0,

of rotational diffusion, and does not contain any information
about the orientations of the transition moments. Information
about rotational diffusion is contained Dy(t).

B. Reversible Intermolecular Two-state Excited-state
Process with Added QuencherConsider the molecular system
(see Scheme 1) with an equilibrium between two different
species A and B in the ground state which form upon

we havet, = 0 andty(kea™ — ksa) = 0. If t; = 0, then alsds
andty have to be zero antl becomes the null matrix, which is
not a valid transformation matrix. From the alternatitg, ™
= kga, We havety = t; + t3, so that the matrix multiplication
in eq 4 yields a set of four equations as a functior;and ¢
(eq 26):

photoexcitation the excited-state species A* and B*, respec- —tlk0A+= —t,koa T t3Kag (26a)
tively. The deactivation of these excited-state species via

fluorescence and nonradiative processes is described by the tikag "= (t; + to)Kng (26Db)
combined rate constarksa for A* and kog for B*. By addition

of an external quencher, Q, with concentration [ the t3(Kog T Kag — kOA+) =0 (26¢)
photophysical system, the depletion of the excited states is

enhanced b¥oa [Q]; for A* and kgs [Q]; for B*. It is assumed tokag " = (t; T t) (ko + Kng " — Koz — Kag)  (260)

that the quencher Q has only an effect on the excited species
and does not affect the ground-state equilibrium. The transfor- From eq 26¢ one concludes that either 0 or koa™ = ko +

mation of A* into B* is labeled with the rate constakga, while
the reverse process is describedkayg. When the system of
Scheme 1 is excited at time zero witld-goulse of low intensity,

which does not significantly deplete the ground-state species,

the fluorescenced-response functionQju(t) at coreactant
concentration [X] and quencher concentration [Qhonitored
at emission wavelength;®™ due to excitation ai®* can be

Kag.

If t3 = 0, the original rate constants are obtaindga™ =
koa, Kag™ = kag, kea™ = kaa, kog™ = kog. This set corresponds
to T = tal,, with |, the 2 x 2 identity matrix.

If alternativelykoa™ = kos + kag (t3 = 0), then from eqgs 26a
and 26b we havéag™ = koa — kog and substituting eq 26b
into eq 26d yieldkog™ = kog.
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Now matrix T takes the form

To summarize, we obtain two sets of rate constant values:
set S1 (the original or “true” set):

t, 0

t 41, @7)

koa" = koa (28a)
Kag = Kag (28b)
Kea = Kaa (28c)
kog = ko (28d)
with T = 11, and set S2 (the alternative set) given by eq 29:
Kon'" = kog *+ Kag (29a)
kAB+ = Koa — Kog (29b)
kBA+ = Kga (29c¢)
kos "= Ko (29d)

with T given by eq 27 withtz = 0. Equation 29b requires that
koa > kog. For set S2 we have from eq 26b thglt; = (koa —
kos — Kag)/Kag.

Now we will show that the ambiguity in the rate constants

J. Phys. Chem. A, Vol. 109, No. 32, 2006029

~ +_ o~ ~ +_ o~
Cajoo = Cay and Cgjoo = Cy

J (33b)

Equation 33 shows that the normalizBgk oo = bai and&a; o
= Gaj are unique. The use of normalizbgh and&y; in global
compartmental analysig12allowsbai to be linked at the same
coreactant concentration [Xpand excitation wavelength®™,
whereasCs; can be linked at the same emission wavelength
/ljem_lz

Now we consider the case whee A, b, c) = Di(t) (eq 8)
in which we will use the results of the identifiability analysis
involving Si(t). We assume that the similarity transformations
for Si(t) andDi(t) are independent. Also the transformations
of the various blocksApkom in Apk are independent. For a
cylindrically symmetricrotor, A = Apk (eq 10) with blocks
Apkaw given by eq 11b = biu (eq 16),c = ¢jau (eq 20).
Matrix T is a block-diagonal matrix (eq 34, see Appendix):

T,0 00O
0 T.;,0 00
T=|0 0 T,0 O (34)
0 0 o0oTo0
0 0 00T,
with the matricesTy (M = —2, —1, 0, 1, 2) expressed as

tM,l tM,Z
tM,S tM,4

M=

(35)

]

Becausel andA = Apk are both block-diagonal matrices, the
matrix multiplication of eq 4 is split into five separate matrix

(i.e., two possible sets) can be resolved by a monoexponentialmultiplications (two of those are identical = —2 andM =

f(t) at [X]x = 0. Indeed, the fluorescenderesponse function

f(t) becomes monoexponential for [XF 0, with decay rate
constantkoa. From this monoexponentift), we havekoa™ =

koa. Equation 26a leads then t9 = 0 and from eq 26b we
havekag® = kag. From eq 26d, we obtaikys™ = kog, SO that

the original set is obtainedT(= til;). To conclude, if the
monoexponentiab-response functio(t) at [X]x = 0 can be
recorded, the model of the reversible intermolecular two-state
excited-state process becomes uniquely identifiable in terms of
rate constants.

Next we will demonstrate that, fof = t;l, (set S1), the
normalizedbai (beik = 1 — bai) and@a;j (Cj = 1 — Taj) are
unique.

For Si(t) the alternativé™ (eq 5a) anct™ (eq 5b) forT =
ty I, are given by

bik,00+ =

B od/ta (30)

+_
Cmjoo = tiCmjo0 (31)

We define the normalizebaik oo" , Daik.00, Caj.00t, @ndEaj.o0 as

bAik,oo+ = bAik,00+/ (bAik,oo+ + bBik,00+) (32a)
E’Aik,oo = bai 0o/ (Paik,00 T Paik,00 (32b)
f\’AJ',OOJr = CAj,00+/ (CAj,ooJr + CBj,00+) (32c)
Caj,00 = Caj,00/(Caj,00 T Cgj 00 (32d)

Use of these normalized elements in eq 30 leads to

by and BBik,00+=bBik (33a)

i + _
bAik,OO -

Analogously, eq 31 gives

+2; M = —1 andM = +1). It is straightforward to show that
the matrix multiplication involvingApx au™ and Apk av [for M
= +£2, 41, 0 (eq 36)]
+_
TmAbkav = ApokauTm (36)
also leads to two sets of alternative parameters: set D1
(corresponding td'y = tuw1l2) given by eq 37

koa + DA,2M+ =Koat Da2u (37a)
Kag "= Kag (37b)
ke = Ka (37¢)
kOB+ + DB,2M+ = kog + D au (37d)
and set D2 (eq 38):

koa' + DA,zM+ = Kog + Kag + Dg om (38a)
Kng "= kon — Kop + Dazv — Deaw (38b)
ke = Ka (38¢)
kOB+ + DB,2M+ = Kog + Dpg 2w (38d)

For set D2 matrixT y takes the form
el b @

with tualtw,1 = (Koa — kos — Kag)/Kas.
To solve for the individuakoa™, kag™, kea™, kogt, Dra™,
Dia™, D™, and Dyg™, one should combine the equations
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describing sets S1 (eq 28) and S2 (eq 29) with the equationscoefficients when the rotational diffusion of the two species is
describing sets D1 (eq 37 witl = £2, £1, 0) and D2 (eq 38 different. If the rotational characteristics of the two species are
with M = 42, 41, 0).kea™ = kga in all four sets. The equations identical, a second set of rate constants (S2) is possible.
describing sets D1 and D2 are indeed not sufficient to lead to  Now we consider the case whei(g A, b, ¢) = Di(t) for a
unique solutions for the unknown rate constants and diffusion spherically symmetricotor. AsD, = Dy = D, the expression
coefficients. In principle 16 combinations of eqs 28, 29, 37, for D,y becomes independent & and reduces t®, oy =

and 38 are possible (e.g., S1, D1 fdr= 0, £2, D2 forM = 6D;.

+1; S2, D2 forM = 0, D1 forM = +1, +2; etc.). However, An identification analysis similar to that for theylindrically

of the 16 possible combinations, only two will lead to a solution symmetricellipsoid also gives two solutions: (i) the set of
for the rate constants and diffusion coefficients. Indeed, S1 (eq alternative rate constants is the original set (S1, eq 28) and the

28) can only be combined with D1 (eq 37 wilth = +2, +1, alternative rotational diffusion coefficients are the original ones;
0). The combination of set S1 (eq 28) with set D2 (eq 38) is
not valid because eq 28b and eq 38b expres&ing are DA+= D, (44a)
incompatible, and hence no solution is possible. Equivalently, .
S2 (eq 29) can only be combined with D2 (eq 38 with= Dg =Dg (44b)
+2, +1, 0), because the combination of S2 with D1 does not
lead to a solution (eq 29b and eq 37b expressing" are (ii) when the rotational diffusion coefficients of both species
contradictory). are the samely = Dg), the set of alternative rate constants is
Combining eq 28 describing S1 with eq 37 describing D1 described by eq 29 (S2) and the alternative rotational diffusion
leads to a set of 10 simultaneous equations in 8 unkndwyis ~ coefficients are the original one®{" = Dg" = Da = D).
kag*, kaa™, kogt, Doat, Dja™, Dog ™, andDys™. Solution of this For Dij(t) the alternativeb™ (eq 5a) anct™ (eq 5b) forTy
overdetermined set of equations yields the original set of = tmal2 are given by
rotational diffusion coefficients: N
N Bikou = B aw/tw,1 (45a)
D, =D (40a)
DA+ A ij,2M+ = ty1,2Cmj,om (45b)
D" =Dy (40b) .
with |, m= A, B andM = £2, £+1, 0.
D.g = Dgg (40c) Therefore, one has
DIIB+ =Dy (40d) Bi om " Crnjom T= Bik 2mCrmj2m (46)
Hence, by combining set S1 and D1 the original rate constants The products of the spherical harmonics implicitly contained
and rotational diffusion coefficients are obtained. in eq 46 can simply be summed via the addition theofém,
Now we examine the second possible combination (S2 and Yielding the second-order Legendre polynonita(é-&y) of the
D2). Equations 29b and 38b lead B oy = Dg oy for M = cosine of the angle between transition mometand &,
+2, +1, 0, yielding 5 .
Dy =D (41a) z B, omCrmjom = ZnBzczblikajpz(éi'ém) (47)
M==2
Dia = Dig (41b) . . . . o4
This theorem in combination with eq 46 abg™ Cmj" = bjkCrm
From eqgs 29a and 38a we habg ou* = Dg o for M = +2, yield
+1, 0, yielding T o
P& &, ) = P&-8y) (48)
D"=D 42a
HA B (422) with I, m = A, B and wherea ™ and &," denote alternative
DIIA+ =Dy (42b) transition moments. This implies that di,(&-&,) can be
uniquely determined.
From egs 29d and 38d we hailg oyt = Dgow for M = £2, The normalizedaik,av™, Daik2w, Cajzut, andtaj av are defined
+1, 0, yielding as
Dys = Dgg (43a) BAik,2M+ = bAik,ZMJr/ (bAik,2M+ + bBik,2M+) (49a)
[)”B+ =Dy (43b) E’Aik,zm = Dajk ou/ (Baik 2w T Paic 2w) (49b)
~ +_ + + +
If the rotational diffusion coefficients of both species are equal Cajom = Cajom /(Cajom t+ Cojom ) (49c)
(Dua = Dgg andDya = Dyg), the alternative rate constants are Caiom = Cai o/ (Caj o T+ Ca o) (49d)
given by set S2 (eq 29) and the alternative diffusion coefficients A2 ALAERTAL2M Bl.2M
are+the original oneDa* = D™ = Doa = D andDyja ™ = Use of these normalized elements in egs 45a and 45b leads to
Dig”™ = Dia = Dig).
To summarize, the identifiability analysis involving both 5Aik2M+= BA”( oM (50a)
Sik(t) and Djj(t) shows that the model for reversible intermo- ’ '
lecular two-state excited-state processes with coupled rotational Cajom' = Cajom (50b)

diffusion for a cylindrically symmetricellipsoid is uniquely
identifiable in terms of rate constants and rotational diffusion Substitution of eq 14 in eq 50a gives
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M/a + M/a
Y'(@) Y (&)
Mia v M/a
Yo' (8g7) Yy (&)
so that theratio of the spherical harmonics for the orientation
of the absorption transition momenég and &g is uniquely

identified.
Similarly, substitution of eq 17 in eq 50b yields

(51)

@) Y, @)
CSERARCY

implying that theratio of the spherical harmonics for the
orientation of the emission transition momeés and &g is
uniquely determined.

In conclusion, if the rotational diffusion coefficients of the
two species are different, rotational diffusion joined with an

(52)
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is evident that two cases have to be considered to ensur€ that
is independent of [Q] eithert; = 0 or koa™ = kgg. Now the
set of egs 54 is reduced to the set of egs 26. (i) # 0, from

eq 54a we obtaikoa™ = koa, from eq 54bkag™ = kag, and
from eq 54dkos™ = kog. Hence, the alternative set of rate
constants equals the original set (S1, eq 28) Wik™ = koa
and kog™ = kog. This set corresponds & = t; 5. (ii) If
alternativelyt; = 0 we havekoa™ = kog. In combination with
koa™ = Koa, this yieldskoa = kgg. Equation 54¢ producdea™

= kog + kag, and from eqgs 54a and 54b we hdug* = koa —

kos and substituting eq 54b into eq 54d yiekig™ = kog. TO
summarize, if the quenching rate constants are identieal (
= kgg), the alternative set of rate constants is given by set S2
(eq 29) andkoa™ = ko' = koa = kog. In that caseT is given

by eq 27 withta/t; = (koa — kog — kas)/kag. Since all rate
constants should be positive, this set is only possible vikggn

> kog.

intermolecular two-state excited-state process makes this model For Sik(t) the alternativeb™ (eq 5a) anct™ (eq 5b) forT =

uniquely identifiable in terms of rate constarksrotational
diffusion constant® and normalizedaiov and &aj av.

B. Reversible Intermolecular Two-State Excited-State
Process with Added Quencher.The expressions foApyau
(eq 11 for polarized fluorescence) aAd (eq 22 for quenching)
are formally equivalent. Therefore, we want to investigate if
the role played by rotational diffusion in the polarized fluores-
cence measurements can be taken up by quenchind(tFar
b, ) = Qju(t) we have thatA = Ay (eq 22),b = by (eq 23),
andc = ¢ (eq 24). MatrixT is given by eq 25.

The matrix multiplication of eq 4 yields

_tl(k0A+ + kBA+[X] Kt kQA+[Q]I) + t2kBA+[X] k=
—ty(Koa T KgalX] + KoalQl)) + tskag (532)
tlkAB+ - tz(kOB+ + kAB+ + kQB+ [Ql) =
_tZ(kOA + KgalX] + kQA[Q]I) +tKag (53b)
_t3(kOA+ + kBA+[X] Kt kQA+[Q]I) + t4kBA+[X] k—
tikealX] k — ta(kog + Kag t koplQl) (53c)
t3kAB+ - t4(k0|3+ + kAB+ — kog — Kng) =
tokaalX]\ + takos — kop)[Ql (53d)

Since the elements(i = 1, ..., 4) of T are independent of [X]
and sincekga = 0, we have from eq 53d thak = O.
Furthermore, since the elemenmtalso are independent of [Q]
we have from eq 53d thahs™ = kog (the alternativet, = 0,
would lead to the nulll matrix). Thus, the set of equations in
eq 53 is simplified to the following set (eq 54):

_tl(kOA+ — kon) — tKag = tl(kBA+ — Kea)[X]c +
tikoa " — kon[Ql; (54a)

t1kAB+ =t,Knp (54b)

_tS(kOA+ — Kog — Kag) = [tikga + (3 — tA)kBA+][X] Kkt
talkon " — kee)[Ql) (540)

tskABJr = t4(k0|3+ + kAB+ — kog — Kag) (54d)

SinceT is independent of [X} we have from eq 54a thaga™
= kga (the alternativet; = 0, would lead to the null matrix),
and from eq 54d; = t4 — tz. Moreover, sincd is independent
of [Q]}, we have from eq 54a thapa™ = koa. From eq 54c, it

tal , are given by

b" =bit, (55a)

¢ =tc (55b)
Use of normalized elements in egs 55 leads to unique normalized
Daik and@aj: bai™ = bai and&aj* = &;. Hence, addition of
guencher to a reversible intermolecular two-state excited-state
process makes this model uniquely identifiable in terms of rate
constants and normalizelthi and &y if the quenching rate
constants are different. Quenching takes up the role played by
rotational diffusion in polarized measurements.

5. Discussion and Conclusions

We have demonstrated that the similarity transformation
approach can be applied successfully in the identifiability study
of models of reversible intermolecular two-state excited-state
processes with (i) coupled species-dependent rotational diffusion
described by Brownian reorientation, and with (ii) added
guencher. The results obtained are in perfect agreement with
the deterministic identifiability studies using Markov parameters
and elementary functions of the rate and diffusion constdrts.
The similarity transformation approach has the additional
advantage of providing the explicit relationship between the true
and alternative model parameters.

In the case of coupled species-dependent rotational diffusion
the sumS(t) = Iy(t) + 2 I(t) and the differenc®(t) = I, (t) —

Io(t) are used in the identifiability. The sum cur8g) describes

the time dependence of the total fluorescence and contains
information only on the excited states as a whole. In the
difference curveD(t), the rotational kinetic behavior interacts
closely with the overall excited-state kinetics. Because of the
clear dependence oft) and D(t) on A, b, and c, the
identifiability analysis is simpler if one uses ti$) andD(t)
functions instead of|(t) and I(t). If the rotational diffusion
constants of both species are different, coupling the rotational
diffusion with the overall excited-state kinetics makes the model
globally identifiable in terms of the rate constants and the
rotational diffusion constants. In that case, inclusion of polariza-
tion as an experimental coordinate abrogates the need for the
extra experimental coordinate supplied heretofore by addition
of a quenching agent. The role of quenching is taken up by the
diffusion constants [compare the matricksy v (eq 11) and

Au (eq 22)]. It has to be emphasized that the rotational
characteristics of the individual rotors can be obtained even
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when they cannot be directly separated because of the excited-onto itself under the action of the operatat. These subspaces
state reaction. W are said to be invariant under the operatdr

The model of reversible intermolecular two-state excited-state  For the matrixApk there are 5 subspaces each of dimension
processes with species-dependent rotational diffusion may well 2. It can be show#¥ that the eigenvalues @px can be properly
be applicable to a wide range of molecular and biomolecular paired and labeled with the correct valueMdf The subspaces
systems, where fast kinetics of reversible processes are ofcorresponding to the paired eigenvalues can then be labeled also,
interest. The change brought about by the excited-state processo that one obtainfdWu|M = —2, -1, 0, 1, 2. Becauseé\pk av
involving the coreactant leads in general to a change in size = Apy,-u the subspacedi, andW-y can be swapped.
and shape of the rotating unit containing the fluorophore. = When alsoAp" is a block diagonal matrix, the matrik
Relatively small changes of this kind (on the order of factors maps basis vectors &ffy onto Wy«. Since the eigenvalues of
of two in the principal rotational diffusion constants) are Ap,* can also be properly paired and labeled, one hashhat
expected for excimers and exciplexes. Another application is = |M*|. Therefore,T is a block diagonal matrix.
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