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Analysis of related time-resolved fluorescence measurements can possibly lead to the determination of the
kinetic parameters of excited-state processes. A deterministic identifiability analysis on an error-free fluorescence
decay data surface has to be executed to verify whether the parameters of a particular model can be determined
and may point to the minimal experimental conditions under which this will become possible. In this work,
similarity transformation is chosen as an identifiability analysis approach because it also gives the explicit
relationships between the true and alternative model parameters. Results are presented for two kinetic models
of a reversible intermolecular two-state excited-state process in isotropic environments: (a) with coupled
species-dependent rotational diffusion described by Brownian reorientation and (b) with added quencher. For
model a, both spherically and cylindrically symmetric rotors, with no change in the principal axes of rotation
in the latter, are considered. The fluorescenceδ̇-response functionsI|(t) andI⊥(t), for fluorescence polarized
respectively parallel and perpendicular to the electric vector of linearly polarized excitation, are used to define
the sumS(t) ) I|(t) + 2 I⊥(t) and the differenceD(t) ) I|(t) - I⊥(t) function. The identifiability analysis is
carried out using theS(t) andD(t) functions. The analysis involvingS(t) shows that two physically acceptable
possible solutions for the overall rate constants of the excited-state process exist. Inclusion of information
from polarized fluorescence measurements on the rotational kinetic behavior contained inD(t) results in the
unique set of rate constants and rotational diffusion coefficients when the rotational diffusion coefficients are
different. For model b, it is shown that addition of quencher plays formally the same role as rotational diffusion
as far as the identification is concerned. When the quenching rate constants are different, the rate constants
of a reversible intermolecular two-state excited-state process with added quencher can be uniquely determined.

1. Introduction

Time-resolved fluorescence measurements are essential tools
for investigating the dynamics of excited-state processes. To
decide on the appropriate model to describe a photophysical
system, fluorescence decay traces are measured under different
experimental conditions, so that a multidimensional fluorescence
decay data surface is generated. For the models of reversible
intermolecular two-state excited-state processessconsidered in
this papersthe experimental axes that can be varied are the
excitation and emission wavelengths, coreactant concentration,
quencher concentration, and polarization. In many cases, the
fluorescence response after a short excitation pulse can be
described by a sum of exponentially decaying functions. In the
single-curve analysis, each fluorescence decay curve is analyzed
separately in terms of the decay timesτ and their associated
amplitudesR. A proposed model is then tested by the consis-
tency of the recovered decay parameters. A subsequent analysis
of the parameter estimates provides the relevant parameters of
interest, e.g., the rate constants of the excited-state process. This

conventional approachsthough adequate in many casessfails
to take full advantage of relations that may exist between
individual decay traces. The simultaneous or global analysis1,2

of multiple decays uses (and tests) those relationships by keeping
some model parameters in common (i.e., linked in global curve-
fitting analysis) between various related experiments. For the
models discussed in this paper, the decay timesτ ought to be
independent of the excitation and emission wavelengths and,
hence, can be linked between experiments measured at different
excitation and emission wavelengths. The advantages of the
global analysis method are the improved model-discriminating
capability and the increased accuracy and precision of the
parameter estimates in comparison to the single-curve analysis.1,2

However, in many instances, the decay timesτ will vary
between related experiments and hence cannot be linked. This
is, for example, the case where changing the coreactant and/or
quencher concentrations leads to changes inτ values. In this
case, it is more appropriate to fit directly for the more
fundamental underlying parameters, namely the rate constants
and spectral parameters related to excitation and emission,
instead of empirical parameters such as the decay timesτ. By
estimating directly the primary parameters of interest in a single-
step analysis of the entire fluorescence decay data surface, the
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model is directly imposed on the data, and the model-testing
capability is improved.

Whenever a particular model is proposed for the description
of excited-state processes, one should start with a study to verify
whether the kinetic and spectral parameters defining the model
can be determined from error-free fluorescence decay data. This
is the subject matter of the deterministic identifiability analysis.3-5

Such an investigation may also point to the minimal set of
experimental conditions under which the model parameters will
be uniquely determined. The identifiability of various models
of reversible intermolecular two-state excited-state processes
constitutes the topic of this paper.

Since time-resolved fluorescence can in many instances be
described by a set of coupled first-order differential equations,
modeling of excited-state processes in photophysics can con-
veniently be done within the framework of compartmental
analysis. Considering the extensive use of compartmental
modeling in biomedicine, pharmacokinetics, analysis of eco-
systems, etc. (see, for example, refs 3-5), it is rather surprising
that its use in photophysics started relatively late.6-10

Let us define first the term “compartment” in a photophysical
context. In photophysics, a compartment is defined as a
subsystem composed of a distinct type of species that acts
kinetically in a unique way. The concentration of the constituting
species can change when the compartments exchange material
through intramolecular or intermolecular processes. In the
context of compartmental modeling of excited-state processes,
compartments can be divided into ground and excited-state
compartments depending upon the state of the composing
species. There may be inputs from ground-state compartments
into one or more of the excited-state compartments by photo-
excitation. Since there is always output from the excited-state
compartments to the ground-state compartments through (radia-
tive and radiationless) deactivation, a photophysical system
involving excited-state compartments is said to be open. If the
concentrations of the species in the ground state do not
significantly change upon photoexcitation, it suffices to consider
the excited-state compartments.

There are three possible outcomes to the deterministic
identifiability analysis.

(1) The parameters of an assumed model can be estimated
uniquely and the model isuniquely(globally) identifiable from
the idealized experiment.

(2) There are a finite number of alternative estimates for some
or all of the model parameters that fit the data and the model is
locally identifiable.

(3) An infinite number of model parameter estimates fit the
data and the model isunidentifiablefrom the experiment.

For the models considered in this paper, the parameters to
be identified are rate constants, spectral parameters related to
excitation and emission, rotational diffusion coefficients, and
the relative orientation of absorption and emission dipoles.

A deterministic identifiability analysis is a prerequisite before
attempting to estimate the model parameters from real experi-
mental observations. Large uncertainties and high correlations
obtained in the parameter recovery from an experimental data
surface might erroneously be ascribed to numerical ill-
conditioning. However, these may be rather indicative of the
fact that the model parameters cannot be recovered at all (i.e.,
the model is unidentifiable). Indeed, parameter estimates with
large errors also may be due to the fact that extra time-resolved
fluorescence data along additional experimental axes are
required or that the used experimental technique can never
generate the parameters of the assumed model.

Since the first identifiability analysis of an intermolecular two-
state excited-state process,8 identifiability studies of a large range
of compartmental models of intermolecular as well as intramo-
lecular two-state and three-state excited-state processes have
been reported (see ref 11 for literature data). The identifiability
analyses of reversible intermolecular two-state excited-state
processes in the absence11-13 and presence14 of quencher have
been confined to consideration of the whole excited-state
population, as monitored by total (or “magic angle”-selected)
fluorescence.

There are several methods available for the analysis of the
deterministic identifiability (i.e., identifiability with perfect
data).4,5 The initial approach12-14 used to investigate the
identification of reversible intermolecular two-state excited-state
processes involved Markov parameters and elementary functions
of the rate constants. The more recent work11 used similarity
transformations.4,5,15,16The method of similarity transformation
offers a direct way of determining whether a model is globally
or locally identifiable or not identifiable at all. Moreover,
similarity transformation provides the explicit relationship
between the true and alternative model parameters.

This report focuses primarily on the identifiability via
similarity transformation of a model of reversibleintermolecular
two-state excited-state processes, without transient effects (i.e.,
with kinetics governed by time-independent rate constants),
accompanied by species-dependent rotational diffusion, as
detected by time-resolved fluorescence anisotropy. Spherically
and cylindrically symmetric rotors are considered, with in the
latter case, no change in the principal axes of diffusion tensors
of both excited-state species. The case where the principal axes
of the diffusion tensors of both interconverting excited-state
species are not the same is very complex17 and is not considered
here. In the extensive field of time-resolved fluorescence
spectroscopy, only a relatively small literature has been devoted
to the problem of excited-state processes coupled with species-
dependent rotational diffusion (see reference 18 and references
therein). Chuang and Eisenthal17 provided the basis for the
derivation of explicit expressions describing the time-resolved
fluorescence anisotropy of two-state excited-state processes
coupled with species-dependent rotational diffusion without
transient effects. Further extensions relevant for the present study
were presented by Cross et al.19 and by Limpouchova´ and
Procházka.20 On the basis of the theory reported in these
papers,17,19,20a compartmental description was derived for the
fluorescence anisotropy decay of intermolecular two-state
excited-state processes together with species-dependent rota-
tional diffusion.18

A second issue addressed in this report is the identification
of a model of reversible intermolecular two-state excited-state
processes in the presence of added quencher. It will be shown
that for the identification, quenching isformally equivalent to
rotational diffusion.

The paper is organized as follows. In section 2, the general
concepts of identifiability via similarity transformation are
presented. In section 3A, the polarization-selected kinetics of a
reversible intermolecular two-state excited-state process coupled
with species-dependent rotational diffusion is presented for
cylindrically symmetrical ellipsoids. Theδ-response functions,
I|(t) and I⊥(t), for fluorescence polarized respectively parallel
and perpendicular to the electric vector of linearly polarized
excitation, are used to define the sumS(t) ) I|(t) + 2 I⊥(t) and
the differenceD(t) ) I|(t) - I⊥(t) function. The sum,S(t), and
difference,D(t), functions are expressed in matrix form, suitable
for the identifiability analysis. Section 3B gives the matrix

Reversible Intermolecular Excited-State Processes J. Phys. Chem. A, Vol. 109, No. 32, 20057025



formulation of the fluorescenceδ-responseQ(t) of a model of
reversible intermolecular two-state excited-state processes in the
presence of added quencher. Section 4 deals with the deter-
ministic identifiability analysis of these two kinetic models. In
section 4A we show how the information from polarized
measurementssexpressed inS(t) and D(t)sis used for the
determination of the rate constants and rotational diffusion
coefficients. Section 4B describes the identification analysis
involving Q(t) for the model with added quencher.

Numerical identifiability (curve-fitting) which takes into
account the noise level on the experimental data, the sampling
and the sensitivity of the algorithms used in the estimation of
the parameters are not considered in this study.

2. Identifiability Analysis via Similarity Transformation:
General Concepts

For a linear, time-invariant compartmental system withN
excited-state compartments, the fluorescenceδ-response function
f(t) can be expressed as12

whereb is a column vector of dimensionN whose elements
are the initial concentrations of each excited-state compartment;
c is a 1 × N vector related to the contribution of each
compartment to the emission;A is aN × N matrix (“compart-
mental matrix”) containing the kinetic information (“transfer
coefficients”) of all processes. Equation 1 shows that the
response of a linear, time-invariant compartmental system to
an impulsive perturbation consists of a sum of exponentials
(usually with as many exponentials as compartments).

The set (A, b, c) is called a realization of the fluorescence
δ-response functionf(t). The deterministic identification (or
identifiability) study investigates whether it is possible to find
different realizations off(t), e.g., (A+, b+, c+), so that

In other words, the fluorescenceδ-response functionf(t) should
be the same for the true (A, b, c) and the alternative (A+, b+,
c+) model parameter set.4,5

Global identifiability is achieved whenA+ ) A, b+ ) b,
andc+ ) c (i.e., a unique set of model parameters is obtained).
The model is locally identifiable when there is a limited set of
alternativeA+, b+, andc+. An unidentifiable model is found
when there are an infinite number of alternativeA+, b+, and
c+.

The specific definitions of the compartmental matrixA, the
excitation coefficientsb, and the emission coefficientsc are
given in section 3. The formulation given in eq 2 is appropriate
for most systems found in biomedicine, pharmacokinetics,
ecosystem modeling, and engineering,3-5 but it is not suitable
for photophysical systems where absolute values forb and c
cannot be obtained, as will be discussed in section 4.

Any other (alternative) realization (A+, b+, c+) of f(t) is
related to the true set (A, b, c) via similarity transforma-
tion,4,5,11,15,16

whereT is a constant invertible (or nonsingular) matrix (i.e.,
det T * 0) having the same dimension asA.

One can rewrite eq 3 in the form

The alternativeb+ andc+ are given by

Equations 3 (or 4) and 5 should be satisfied for each experi-
mental condition. For the models considered, the possible
experimental variables are coreactant concentration [X]k, quench-
er concentration [Q]l, excitation wavelengthλi

ex, and emission
wavelengthλj

em (and in principle also the orientations of the
polarizers in the excitation and emission paths). This implies
that the matrixT should be independent of [X]k, [Q]l, λi

ex, and
λj

em. Indeed, sincec+ should not depend on [X]k, [Q]l, andλi
ex,

T should be independent of [X]k, [Q]l, and λi
ex. Similarly,

because of the independence ofb+ (andA+) of λj
em, T should

be independent ofλj
em.

3. Kinetics

A. Reversible Intermolecular Two-State Excited-State
Process with Species-Dependent Rotational Diffusion.The
linear, time-invariant photophysical system consisting of two
different interchanging species A and B, each with distinct
rotational characteristicssas depicted in Figure 1sis considered.
The two ground-state species are assumed to be in equilibrium.
Photoexcitation of the system produces the excited-state species
A* and B* which can decay by fluorescence (kF) and nonra-
diative (kNR) processes.k0A ()kFA + kNRA) and k0B ()kFB +
kNRB) denote the composite deactivation rate constants of A*

f(t) ) c exp(At)b (1)

f(t, A, b, c) ) f(t, A+, b+, c+) (2)

A+ ) T-1AT (3)

Figure 1. Graphic representation of a reversible intermolecular two-
state excited-state process, including rotation. Species A* and B* are
pictured as being initially excited from their ground states A and B by
an infinitely short linearly polarized light pulse at wavelengthλi

ex in a
unique absorption band. The excited-state processes are described by
the deactivation rate constantsk0A and k0B, and the excited-state
exchange rate constantskBA and kAB. The transformation of species
A* into B* is mediated by coreactant X with concentration [X]k.
Simultaneously the species rotate with rate constants determined by
the corresponding rotational diffusion tensorsDA andDB, which may
differ between the species. The polarized emission of each species
depends on the relative orientation of its emission transition moment
(with unit vectorêA or êB) at the instance of emission with respect to
the absorption moment (with unit vectorâA or âB) in the species initially
excited.

TA+ ) AT (4)

b+ ) T-1b (5a)

c+ ) cT (5b)
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and B*, respectively. The rate constant describing the intermo-
lecular (with coreactant X) transformation of A* into B* is
represented bykBA. The reverse process, described bykAB, is
concentration independent. All the rate constants are assumed
independent of the instantaneous orientation of the species. The
physical requirement restricts the rate constants to be nonneg-
ative. The rotational relaxation of each excited-state species is
governed by its principal rotational diffusion constants, here
D⊥ andD| for rotation, respectively, of and about the symmetry
axis of each of the cylindrically symmetric rotors depicted in
Figure 1. When the photophysical system shown in Figure 1 is
excited with aδ-pulse of low intensity at time zero, so that the
ground-state species population is not appreciably depleted, the
fluorescenceδ-response functionI|ijk(t) for the plane-polarized
component of emission of the two excited states (A* and B*),
having its electric vector polarized parallel to the electric vector
of the plane-polarized excitation light, and the fluorescence
δ-response functionI⊥ijk(t) for the perpendicularly polarized
component can be expressed, in the case of pure transitions and
isotropic solutions, as21

whererijk(t) denotes the fluorescence emission anisotropy and
where18

The subscriptsi, j, andk in I|ijk(t) and I⊥ijk(t) (eq 6), inSijk(t)
(eq 7) and inDijk(t) (eq 8) refer to the excitation wavelength
λi

ex, the emission wavelengthλj
em, and the coreactant concentra-

tion [X] k, respectively.
Matrix Ak,00 in eq 7 is given by eq 9:

ADk in eq 8 is defined as

with blocksADk,2M given by eq 11:

with M ) -2, -1, 0, 1, 2.Dl,2M (l denotes either A or B) is
given by

Note the invariance of eqs 11 and 12 to the sign ofM.
D⊥l andD|l (see Figure 1) are the components of the rotational

diffusion tensor of thecylindrically symmetric speciesl in its

molecular reference frame (x, y, z), chosen such that the
rotational diffusion tensor is diagonal,18 reducing to the unique
componentDl () D⊥l ) D|l) in the case of thespherically
symmetricrotor l.

For a spherically symmetricrotor (Dl ) D⊥l ) D|l), the
matricesADk,2M (eq 11) are all identical and independent ofM.
Now each matrix blockADk,2M can be written as

Vectorbik,LM [with L ) M ) 0 (eq 7), orL ) 2 andM ) (2,
(1, 0 (eq 8)] contains the excitation coefficientsblik,LM (l denotes
either species A or B). As before, the subscriptsi andk in bik,LM

refer to the excitation wavelengthλi
ex and coreactant concentra-

tion [X] k, respectively. The subscriptsL and M of the blik,LM

coefficients refer to the orientation of the absorption transitions.
The elementsblik,LM can be expressed as the product of the initial
concentration ofl*, blik, the appropriate spherical harmonic
YL

M(âl)22 for the orientation of the absorption transition moment
âl in the molecular frame of speciesl, and a scaling factor
BL:18

with

For L ) M ) 0, we have

The 2× 1 vectorbik,00 in eq 7 is explicitly given by eq 15:

while the 10× 1 vectorbik,2M in eq 8 is expressed as

Vector cj,LM [with L ) M ) 0 (eq 7), orL ) 2 andM ) (2,
(1, 0 (eq 8)] contains the corresponding emission coefficients
cmj,LM (m represents either species A* or B*). As before, the
subscriptj in cj,LM refers to the emission wavelengthλj

em. The
emission coefficientscmj,LM are given by18

whereC0 ) 16/3xπ5, C2 ) 16/15xπ5/5, andYL
M/(êm) is the

complex conjugate of the appropriate spherical harmonic for
the orientation of the emission transition momentêm in the
molecular frame.

For L ) M ) 0, we havecmj,00 ) 8π2cmj/3.
The coefficientcmj is defined as12

wherekFm is the fluorescence rate constant of speciesm*, the

I|ijk(t) ) 1
3
Sijk(t)[1 + 2rijk(t)] ) 1

3
Sijk(t) + 2

3
Dijk(t) (6a)

I⊥ijk(t) ) 1
3
Sijk(t)[1 - rijk(t)] ) 1

3
Sijk(t) - 1

3
Dijk(t) (6b)

Sijk(t) ) 3cj,00 exp(Ak,00t)bik,00 (7)

Dijk(t) ) 3cj,2M exp(ADkt)bik,2M (8)

Ak,00 ) [-(k0A + kBA[X] k) kAB

kBA[X] k -(k0B + kAB) ] (9)

ADk ) [ADk,2-2 0 0 0 0
0 ADk,2-1 0 0 0
0 0 ADk,20 0 0
0 0 0 ADk,21 0
0 0 0 0 ADk,22

] (10)

ADk,2M )

[ - (DA,2M + k0A + kBA[X] k) kAB

kBA[X] k -(DB,2M + k0B + kAB) ]
(11)

Dl,2M ) 6D⊥l + M2(D|l - D⊥l) (12)

ADk,2M ) [-(6DA + k0A + kBA[X] k) kAB

kBA[X] k -(6DB + k0B + kAB) ]
(13)

blik,LM ) BLblikYL
M(âl) (14)

B0 ) 1
12x 1

π3
and B2 ) 1

30x 5

π3

Y0
0(âl) ) 1

x4π
and blik,00 )

blik

24π2

bik,00 ) [bAik,00 bBik,00]T (15)

bik,2M )
[bAik,2-2bBik,2-2bAik,2-1bBik,2-1bAik,20bBik,20bAik,21bBik,21bAik,22bBik,22]

T

(16)

cmj,LM ) CLcmjYL
M/(êm) (17)

cmj ) kFm∫∆λj
emFm(λj

em) dλem (18)
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subscriptj refers to the observation wavelength range,∆λj
em,

andFm(λj
em) is the spectral emission density of speciesm*.

Vector cj,00 in eq 7 is explicitly given by eq 19:

while vectorcj,2M in eq 8 is expressed as

The matrix and vector formulations ofA (eqs 9, 10),b (eqs 15,
16), andc (eqs 19, 20) will prove particularly convenient in
addressing the identifiability analysis to the considered models.

The identification analysis is simpler if one uses the “sum”
Sijk(t) ) I|ijk(t) + 2I⊥ijk(t) and “difference”Dijk(t) ) I|ijk(t) -
I⊥ijk(t) functions of the polarized fluorescenceδ-response
functionsI|ijk(t) andI⊥ijk(t). Sijk(t) corresponds to the total time-
resolved emission of the photophysical system, is independent
of rotational diffusion, and does not contain any information
about the orientations of the transition moments. Information
about rotational diffusion is contained inDijk(t).

B. Reversible Intermolecular Two-state Excited-state
Process with Added Quencher.Consider the molecular system
(see Scheme 1) with an equilibrium between two different
species A and B in the ground state which form upon
photoexcitation the excited-state species A* and B*, respec-
tively. The deactivation of these excited-state species via
fluorescence and nonradiative processes is described by the
combined rate constantsk0A for A* and k0B for B*. By addition
of an external quencher, Q, with concentration [Q]l to the
photophysical system, the depletion of the excited states is
enhanced bykQA [Q] l for A* and kQB [Q] l for B*. It is assumed
that the quencher Q has only an effect on the excited species
and does not affect the ground-state equilibrium. The transfor-
mation of A* into B* is labeled with the rate constantkBA, while
the reverse process is described bykAB. When the system of
Scheme 1 is excited at time zero with aδ-pulse of low intensity,
which does not significantly deplete the ground-state species,
the fluorescenceδ-response functionQijkl(t) at coreactant
concentration [X]k and quencher concentration [Q]l, monitored
at emission wavelengthλj

em due to excitation atλi
ex can be

expressed in matrix notation:14

with Akl given by eq 22:14

bik andcj are given by eqs 23 and 24, respectively:14

4. Identifiability Analysis

A. Reversible Intermolecular Two-State Excited-State
Process with Species-Dependent Rotational Diffusion.Since
bothSijk(t) (eq 7) andDijk(t) (eq 8) can be expressed in matrix
form, the identification analysis via similarity transformation
is carried out using theSijk(t) andDijk(t) functions.

Let us start with the identification involvingSijk(t). For f(t,
A, b, c) ) Sijk(t) (eq 7), we have thatA ) Ak,00, (eq 9),b )
bik,00 (eq 15),c ) cj,00 (eq 19). MatrixT is then given by eq
25:

As Sijk(t) reflects the time dependence of the total fluorescence
and contains information only on the excited states, we can
expect that the identifiability analysis will be the same as that
reported for a reversible intermolecular two-state excited-state
process.11 Therefore, we refer to ref 11 for more mathematical
details. As the results of the identifiability analysis involving
Sijk(t) will be used in the analysis withDijk(t), we will sketch
the identifiability procedure.

Performing the matrix multiplication in eq 4 withA ) Ak,00

yields a set of four simultaneous equations. Since the elements
ti (i ) 1, ..., 4) ofT are independent of [X]k and sincekBA * 0,
we havet2 ) 0 andt1(kBA

+ - kBA) ) 0. If t1 ) 0, then alsot3
andt4 have to be zero andT becomes the null matrix, which is
not a valid transformation matrix. From the alternative,kBA

+

) kBA, we havet4 ) t1 + t3, so that the matrix multiplication
in eq 4 yields a set of four equations as a function oft1 and t3
(eq 26):

From eq 26c one concludes that eithert3 ) 0 or k0A
+ ) k0B +

kAB.
If t3 ) 0, the original rate constants are obtained:k0A

+ )
k0A, kAB

+ ) kAB, kBA
+ ) kBA, k0B

+ ) k0B. This set corresponds
to T ) t1I2, with I2 the 2× 2 identity matrix.

If alternativelyk0A
+ ) k0B + kAB (t3 * 0), then from eqs 26a

and 26b we havekAB
+ ) k0A - k0B and substituting eq 26b

into eq 26d yieldsk0B
+ ) k0B.

SCHEME 1: Scheme Representing a Reversible
Intermolecular Two-State Excited-State Process with
Added Quenchera

a It is assumed that the quencher Q has only an effect on the excited
species and does not affect the ground-state equilibrium. The excited-
state processes are described by the deactivation rate constantsk0A and
k0B, and the excited-state exchange rate constantskBA and kAB. The
additional quenching of A* and B* due to the external quencher Q is
described by the rate constantskQA andkQB, respectively.

Qijkl(t) ) cj exp(Aklt)bik (21)

Akl )

[-(kQA[Q] l + k0A + kBA[X] k) kAB

kBA[X] k -(kQB[Q] l + k0B + kAB) ]
(22)

bik ) [bAik bBik ]T (23)

cj ) [cAj cBj ] (24)

T )[t1 t2
t3 t4] (25)

-t1k0A
+ ) -t1k0A + t3kAB (26a)

t1kAB
+ ) (t1 + t3)kAB (26b)

t3(k0B + kAB - k0A
+) ) 0 (26c)

t3kAB
+ ) (t1 + t3)(k0B

+ + kAB
+ - k0B - kAB) (26d)

cj,00 ) [cAj,00cBj,00] (19)

cj,2M )
[cAj,2-2cBj,2-2cAj,2-1cBj,2-1cAj,20cBj,20cAj,21cBj,21cAj,22cBj,22]

(20)
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Now matrix T takes the form

with t3 * 0.
To summarize, we obtain two sets of rate constant values:

set S1 (the original or “true” set):

with T ) t1I2 and set S2 (the alternative set) given by eq 29:

with T given by eq 27 witht3 * 0. Equation 29b requires that
k0A > k0B. For set S2 we have from eq 26b thatt3/t1 ) (k0A -
k0B - kAB)/kAB.

Now we will show that the ambiguity in the rate constants
(i.e., two possible sets) can be resolved by a monoexponential
f(t) at [X]k ) 0. Indeed, the fluorescenceδ-response function
f(t) becomes monoexponential for [X]k ) 0, with decay rate
constantk0A. From this monoexponentialf(t), we havek0A

+ )
k0A. Equation 26a leads then tot3 ) 0 and from eq 26b we
havekAB

+ ) kAB. From eq 26d, we obtaink0B
+ ) k0B, so that

the original set is obtained (T ) t1I2). To conclude, if the
monoexponentialδ-response functionf(t) at [X]k ) 0 can be
recorded, the model of the reversible intermolecular two-state
excited-state process becomes uniquely identifiable in terms of
rate constants.

Next we will demonstrate that, forT ) t1I2 (set S1), the
normalizedb̃Aik (b̃Bik ) 1 - b̃Aik) and c̃Aj (c̃Bj ) 1 - c̃Aj) are
unique.

For Sijk(t) the alternativeb+ (eq 5a) andc+ (eq 5b) forT )
t1 I2 are given by

We define the normalizedb̃Aik,00
+ , b̃Aik,00, c̃Aj,00

+, andc̃Aj,00 as

Use of these normalized elements in eq 30 leads to

Analogously, eq 31 gives

Equation 33 shows that the normalizedb̃Aik,00 ) b̃Aik andc̃Aj,00

) c̃Aj are unique. The use of normalizedb̃Aik and c̃Aj in global
compartmental analysis6,7,12allowsb̃Aik to be linked at the same
coreactant concentration [X]k and excitation wavelengthλi

em,
whereasc̃Aj can be linked at the same emission wavelength
λj

em.12

Now we consider the case wheref(t, A, b, c) ) Dijk(t) (eq 8)
in which we will use the results of the identifiability analysis
involving Sijk(t). We assume that the similarity transformations
for Sijk(t) andDijk(t) are independent. Also the transformations
of the various blocksADk,2M in ADk are independent. For a
cylindrically symmetricrotor, A ) ADk (eq 10) with blocks
ADk,2M given by eq 11,b ) bik,2M (eq 16),c ) cj,2M (eq 20).
Matrix T is a block-diagonal matrix (eq 34, see Appendix):

with the matricesTM (M ) -2, -1, 0, 1, 2) expressed as

BecauseT andA ) ADk are both block-diagonal matrices, the
matrix multiplication of eq 4 is split into five separate matrix
multiplications (two of those are identical;M ) -2 andM )
+2; M ) -1 andM ) +1). It is straightforward to show that
the matrix multiplication involvingADk,2M

+ andADk,2M [for M
) (2, (1, 0 (eq 36)]

also leads to two sets of alternative parameters: set D1
(corresponding toTM ) tM,1I2) given by eq 37

and set D2 (eq 38):

For set D2 matrixTM takes the form

with tM,3/tM,1 ) (k0A - k0B - kAB)/kAB.
To solve for the individualk0A

+, kAB
+, kBA

+, k0B
+, D⊥A

+,
D|A

+, D⊥B
+, and D|B

+, one should combine the equations

T ) [t1 0
t3 t1 + t3] (27)

k0A
+ ) k0A (28a)

kAB
+ ) kAB (28b)

kBA
+ ) kBA (28c)

k0B
+ ) k0B (28d)

k0A
+ ) k0B + kAB (29a)

kAB
+ ) k0A - k0B (29b)

kBA
+ ) kBA (29c)

k0B
+ ) k0B (29d)

bik,00
+ ) bik,00/t1 (30)

cmj,00
+ ) t1cmj,00 (31)

b̃Aik,00
+ ) bAik,00

+/(bAik,00
+ + bBik,00

+) (32a)

b̃Aik,00 ) bAik,00/(bAik,00 + bBik,00) (32b)

c̃Aj,00
+ ) cAj,00

+/(cAj,00
+ + cBj,00

+) (32c)

c̃Aj,00 ) cAj,00/(cAj,00 + cBj,00) (32d)

b̃Aik,00
+ ) b̃Aik and b̃Bik,00

+ ) b̃Bik (33a)

c̃Aj,00
+ ) c̃Aj and c̃Bj,00

+ ) c̃Bj (33b)

T ) [T-2 0 0 0 0
0 T-1 0 0 0
0 0 T0 0 0
0 0 0 T1 0
0 0 0 0 T2

] (34)

TM ) [tM,1 tM,2

tM,3 tM,4] (35)

TMADk,2M
+ ) ADk,2MTM (36)

k0A
+ + DA,2M

+ ) k0A + DA,2M (37a)

kAB
+ ) kAB (37b)

kBA
+ ) kBA (37c)

k0B
+ + DB,2M

+ ) k0B + DB,2M (37d)

k0A
+ + DA,2M

+ ) k0B + kAB + DB,2M (38a)

kAB
+ ) k0A - k0B + DA,2M - DB,2M (38b)

kBA
+ ) kBA (38c)

k0B
+ + DB,2M

+ ) k0B + DB,2M (38d)

TM ) [tM,1 0
tM,3 tM,1 + tM,3] (39)
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describing sets S1 (eq 28) and S2 (eq 29) with the equations
describing sets D1 (eq 37 withM ) (2, (1, 0) and D2 (eq 38
with M ) (2, (1, 0).kBA

+ ) kBA in all four sets. The equations
describing sets D1 and D2 are indeed not sufficient to lead to
unique solutions for the unknown rate constants and diffusion
coefficients. In principle 16 combinations of eqs 28, 29, 37,
and 38 are possible (e.g., S1, D1 forM ) 0, (2, D2 for M )
(1; S2, D2 forM ) 0, D1 for M ) (1, (2; etc.). However,
of the 16 possible combinations, only two will lead to a solution
for the rate constants and diffusion coefficients. Indeed, S1 (eq
28) can only be combined with D1 (eq 37 withM ) (2, (1,
0). The combination of set S1 (eq 28) with set D2 (eq 38) is
not valid because eq 28b and eq 38b expressingkAB

+ are
incompatible, and hence no solution is possible. Equivalently,
S2 (eq 29) can only be combined with D2 (eq 38 withM )
(2, (1, 0), because the combination of S2 with D1 does not
lead to a solution (eq 29b and eq 37b expressingkAB

+ are
contradictory).

Combining eq 28 describing S1 with eq 37 describing D1
leads to a set of 10 simultaneous equations in 8 unknownsk0A

+,
kAB

+, kBA
+, k0B

+, D⊥A
+, D|A

+, D⊥B
+, andD|B

+. Solution of this
overdetermined set of equations yields the original set of
rotational diffusion coefficients:

Hence, by combining set S1 and D1 the original rate constants
and rotational diffusion coefficients are obtained.

Now we examine the second possible combination (S2 and
D2). Equations 29b and 38b lead toDA,2M ) DB,2M for M )
(2, (1, 0, yielding

From eqs 29a and 38a we haveDA,2M
+ ) DB,2M for M ) (2,

(1, 0, yielding

From eqs 29d and 38d we haveDB,2M
+ ) DB,2M for M ) (2,

(1, 0, yielding

If the rotational diffusion coefficients of both species are equal
(D⊥A ) D⊥B andD|A ) D|B), the alternative rate constants are
given by set S2 (eq 29) and the alternative diffusion coefficients
are the original ones (D⊥A

+ ) D⊥B
+ ) D⊥A ) D⊥B andD|A

+ )
D|B

+ ) D|A ) D|B).
To summarize, the identifiability analysis involving both

Sijk(t) andDijk(t) shows that the model for reversible intermo-
lecular two-state excited-state processes with coupled rotational
diffusion for a cylindrically symmetricellipsoid is uniquely
identifiable in terms of rate constants and rotational diffusion

coefficients when the rotational diffusion of the two species is
different. If the rotational characteristics of the two species are
identical, a second set of rate constants (S2) is possible.

Now we consider the case wheref(t, A, b, c) ) Dijk(t) for a
spherically symmetricrotor. AsDl ) D|l ) D⊥l, the expression
for Dl,2M becomes independent ofM and reduces toDl,2M )
6Dl.

An identification analysis similar to that for thecylindrically
symmetricellipsoid also gives two solutions: (i) the set of
alternative rate constants is the original set (S1, eq 28) and the
alternative rotational diffusion coefficients are the original ones;

(ii) when the rotational diffusion coefficients of both species
are the same (DA ) DB), the set of alternative rate constants is
described by eq 29 (S2) and the alternative rotational diffusion
coefficients are the original ones (DA

+ ) DB
+ ) DA ) DB).

For Dijk(t) the alternativeb+ (eq 5a) andc+ (eq 5b) forTM

) tM,1I2 are given by

with l, m ) A, B andM ) (2, (1, 0.
Therefore, one has

The products of the spherical harmonics implicitly contained
in eq 46 can simply be summed via the addition theorem,22

yielding the second-order Legendre polynomialP2(âl‚êm) of the
cosine of the angle between transition momentsâl and êm

This theorem in combination with eq 46 andblik
+ cmj

+ ) blikcmj

yield

with l, m ) A, B and whereâl
+ and êm

+ denote alternative
transition moments. This implies that allP2(âl‚êm) can be
uniquely determined.

The normalizedb̃Aik,2M
+, b̃Aik,2M, c̃Aj,2M

+, andc̃Aj,2M are defined
as

Use of these normalized elements in eqs 45a and 45b leads to

Substitution of eq 14 in eq 50a gives

D⊥A
+ ) D⊥A (40a)

D|A
+ ) D|A (40b)

D⊥B
+ ) D⊥B (40c)

D|B
+ ) D|B (40d)

D⊥A ) D⊥B (41a)

D|A ) D|B (41b)

D⊥A
+ ) D⊥B (42a)

D|A
+ ) D|B (42b)

D⊥B
+ ) D⊥B (43a)

D|B
+ ) D|B (43b)

DA
+ ) DA (44a)

DB
+ ) DB (44b)

blik,2M
+ ) blik,2M/tM,1 (45a)

cmj,2M
+ ) tM,1cmj,2M (45b)

blik,2M
+ cmj,2M

+ ) blik,2Mcmj,2M (46)

∑
M)-2

2

blik,2Mcmj,2M )
5

4π
B2C2blikcmjP2(âl‚êm) (47)

P2(âl
+‚êm

+) ) P2(âl‚êm) (48)

b̃Aik,2M
+ ) bAik,2M

+/(bAik,2M
+ + bBik,2M

+) (49a)

b̃Aik,2M ) bAik,2M/(bAik,2M + bBik,2M) (49b)

c̃Aj,2M
+ ) cAj,2M

+/(cAj,2M
+ + cBj,2M

+) (49c)

c̃Aj,2M ) cAj,2M/(cAj,2M + cBj,2M) (49d)

b̃Aik,2M
+ ) b̃Aik,2M (50a)

c̃Aj,2M
+ ) c̃Aj,2M (50b)
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so that theratio of the spherical harmonics for the orientation
of the absorption transition momentsâA and âB is uniquely
identified.

Similarly, substitution of eq 17 in eq 50b yields

implying that the ratio of the spherical harmonics for the
orientation of the emission transition momentsêA and êB is
uniquely determined.

In conclusion, if the rotational diffusion coefficients of the
two species are different, rotational diffusion joined with an
intermolecular two-state excited-state process makes this model
uniquely identifiable in terms of rate constantsk, rotational
diffusion constantsD and normalizedb̃Aik,2M and c̃Aj,2M.

B. Reversible Intermolecular Two-State Excited-State
Process with Added Quencher.The expressions forADk,2M

(eq 11 for polarized fluorescence) andAkl (eq 22 for quenching)
are formally equivalent. Therefore, we want to investigate if
the role played by rotational diffusion in the polarized fluores-
cence measurements can be taken up by quenching. Forf(t, A,
b, c) ) Qijkl(t) we have thatA ) Akl (eq 22),b ) bik (eq 23),
andc ) cj (eq 24). MatrixT is given by eq 25.

The matrix multiplication of eq 4 yields

Since the elementsti (i ) 1, ..., 4) ofT are independent of [X]k

and sincekBA * 0, we have from eq 53d thatt2 ) 0.
Furthermore, since the elementsti also are independent of [Q]l,
we have from eq 53d thatkQB

+ ) kQB (the alternative,t4 ) 0,
would lead to the nullT matrix). Thus, the set of equations in
eq 53 is simplified to the following set (eq 54):

SinceT is independent of [X]k, we have from eq 54a thatkBA
+

) kBA (the alternative,t1 ) 0, would lead to the nullT matrix),
and from eq 54c,t1 ) t4 - t3. Moreover, sinceT is independent
of [Q] l, we have from eq 54a thatkQA

+ ) kQA. From eq 54c, it

is evident that two cases have to be considered to ensure thatT
is independent of [Q]l: either t3 ) 0 or kQA

+ ) kQB. Now the
set of eqs 54 is reduced to the set of eqs 26. (i) Ift3 ) 0, from
eq 54a we obtaink0A

+ ) k0A, from eq 54bkAB
+ ) kAB, and

from eq 54dk0B
+ ) k0B. Hence, the alternative set of rate

constants equals the original set (S1, eq 28) withkQA
+ ) kQA

and kQB
+ ) kQB. This set corresponds toT ) t1 I2. (ii) If

alternativelyt3 * 0 we havekQA
+ ) kQB. In combination with

kQA
+ ) kQA, this yieldskQA ) kQB. Equation 54c producesk0A

+

) k0B + kAB, and from eqs 54a and 54b we havekAB
+ ) k0A -

k0B and substituting eq 54b into eq 54d yieldsk0B
+ ) k0B. To

summarize, if the quenching rate constants are identical (kQA

) kQB), the alternative set of rate constants is given by set S2
(eq 29) andkQA

+ ) kQB
+ ) kQA ) kQB. In that case,T is given

by eq 27 witht3/t1 ) (k0A - k0B - kAB)/kAB. Since all rate
constants should be positive, this set is only possible whenk0A

> k0B.
For Sijk(t) the alternativeb+ (eq 5a) andc+ (eq 5b) forT )

t1I2 are given by

Use of normalized elements in eqs 55 leads to unique normalized
b̃Aik and c̃Aj: b̃Aik

+ ) b̃Aik and c̃Aj
+ ) c̃Aj. Hence, addition of

quencher to a reversible intermolecular two-state excited-state
process makes this model uniquely identifiable in terms of rate
constants and normalizedb̃Aik and c̃Aj if the quenching rate
constants are different. Quenching takes up the role played by
rotational diffusion in polarized measurements.

5. Discussion and Conclusions

We have demonstrated that the similarity transformation
approach can be applied successfully in the identifiability study
of models of reversible intermolecular two-state excited-state
processes with (i) coupled species-dependent rotational diffusion
described by Brownian reorientation, and with (ii) added
quencher. The results obtained are in perfect agreement with
the deterministic identifiability studies using Markov parameters
and elementary functions of the rate and diffusion constants.14,18

The similarity transformation approach has the additional
advantage of providing the explicit relationship between the true
and alternative model parameters.

In the case of coupled species-dependent rotational diffusion
the sumS(t) ) I|(t) + 2 I⊥(t) and the differenceD(t) ) I|(t) -
I⊥(t) are used in the identifiability. The sum curveS(t) describes
the time dependence of the total fluorescence and contains
information only on the excited states as a whole. In the
difference curveD(t), the rotational kinetic behavior interacts
closely with the overall excited-state kinetics. Because of the
clear dependence ofS(t) and D(t) on A, b, and c, the
identifiability analysis is simpler if one uses theS(t) andD(t)
functions instead ofI|(t) and I⊥(t). If the rotational diffusion
constants of both species are different, coupling the rotational
diffusion with the overall excited-state kinetics makes the model
globally identifiable in terms of the rate constants and the
rotational diffusion constants. In that case, inclusion of polariza-
tion as an experimental coordinate abrogates the need for the
extra experimental coordinate supplied heretofore by addition
of a quenching agent. The role of quenching is taken up by the
diffusion constants [compare the matricesADk,2M (eq 11) and
Akl (eq 22)]. It has to be emphasized that the rotational
characteristics of the individual rotors can be obtained even

Y2
M(âA

+)

Y2
M(âB

+)
)

Y2
M(âA)

Y2
M(âB)

(51)

Y2
M/(êA

+)

Y2
M/(êB

+)
)

Y2
M/(êA)

Y2
M/(êB)

(52)

-t1(k0A
+ + kBA

+[X] k + kQA
+[Q] l) + t2kBA

+[X] k )
-t1(k0A + kBA[X] k + kQA[Q] l) + t3kAB (53a)

t1kAB
+ - t2(k0B

+ + kAB
+ + kQB

+ [Q] l) )
-t2(k0A + kBA[X] k + kQA[Q] l) + t4kAB (53b)

-t3(k0A
+ + kBA

+[X] k + kQA
+[Q] l) + t4kBA

+[X] k )
t1kBA[X] k - t3(k0B + kAB + kQB[Q] l) (53c)

t3kAB
+ - t4(k0B

+ + kAB
+ - k0B - kAB) )

t2kBA[X] k + t4(kQB
+ - kQB)[Q] l (53d)

-t1(k0A
+ - k0A) - t3kAB ) t1(kBA

+ - kBA)[X] k +

t1(kQA
+ - kQA)[Q] l (54a)

t1kAB
+ ) t4kAB (54b)

-t3(k0A
+ - k0B - kAB) ) [t1kBA + (t3 - t4)kBA

+][X] k +

t3(kQA
+ - kQB)[Q] l (54c)

t3kAB
+ ) t4(k0B

+ + kAB
+ - k0B - kAB) (54d)

b+ ) b/t1 (55a)

c+ ) t1c (55b)
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when they cannot be directly separated because of the excited-
state reaction.

The model of reversible intermolecular two-state excited-state
processes with species-dependent rotational diffusion may well
be applicable to a wide range of molecular and biomolecular
systems, where fast kinetics of reversible processes are of
interest. The change brought about by the excited-state process
involving the coreactant leads in general to a change in size
and shape of the rotating unit containing the fluorophore.
Relatively small changes of this kind (on the order of factors
of two in the principal rotational diffusion constants) are
expected for excimers and exciplexes. Another application is
the reversible interaction between a ligand and a receptor. The
fluorescent receptor may be (i) a fluorescent probe and of
comparable size and molecular weight to the ligand or (ii) it
can be a macromolecule, most commonly a protein. In case i,
only relatively small changes in the effective rotational unit,
either in size or shape, may be expected, even for ligands of
comparable size to the receptor. In case ii, when the fluorescent
moiety is the ligand and relatively small compared to the
macromolecular receptor, these changes may be very large. An
application in the field of biochemistry involves the binding of
a small fluorescent molecule by intercalation into double-helical
regions of a nucleic acid.

In the literature some systems have been described with
intramolecular rearrangements of the excited-state species upon
interconversion.23 An identifiability analysis similar to the one
described here can be performed for these intramolecular two-
state excited-state processes and will be reported elsewhere.

To conclude, the model of reversible intermolecular two-state
excited-state processes becomes uniquely identifiable when (i)
a monoexponential fluorescenceδ-response functionf(t) at [X]k

) 0 is used together with the biexponentialS(t), (ii) quencher
is added to this photophysical system and the quenching rate
constants of both excited-state species are different, and (iii)
the polarized fluorescenceδ-response functionsI|(t) and I⊥(t)
are analyzed at different coreactant concentrations [X]k.
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Appendix

Here we show that the transformation matrixT for matrix
ADk takes the form given in eq 34.

The similarity transformation expressed in eq 3 essentially
defines a transformation of basis vectors in a vector spaceV.
An operatorA defined on the vector spaceV can be represented
by the matrixA assuming a set of basis vectors{ei} of the vector
spaceV. If we assume another basis, e.g.,{fi}, the operatorA
is represented by another matrix, e.g.,A+. The matricesA and
A+ are related by an expression of the type given by eq 3. The
matrix T defines the transition matrix from the basis{ei} to
the basis{fi}. When A is a block diagonal matrix, there are
subspaces, e.g.,Wi, in the vector spaceV which are mapped

onto itself under the action of the operatorA . These subspaces
Wi are said to be invariant under the operatorA .

For the matrixADk there are 5 subspaces each of dimension
2. It can be shown18 that the eigenvalues ofADk can be properly
paired and labeled with the correct value ofM. The subspaces
corresponding to the paired eigenvalues can then be labeled also,
so that one obtains{WM|M ) -2, -1, 0, 1, 2}. BecauseADk,2M

) ADk,2-M the subspacesWM andW-M can be swapped.
When alsoADk

+ is a block diagonal matrix, the matrixT
maps basis vectors ofWM onto WM*. Since the eigenvalues of
ADk

+ can also be properly paired and labeled, one has thatM
) |M* |. Therefore,T is a block diagonal matrix.
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